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SUMMARY 

The Compton-effect is considered of thermal of photons on relativistic 
electrons in the atmosphere of the Sun. 
and power of emission for hard photons is performed for two particular cases: 
of isotropic distribution of thermal photons and at  their radial propagation. 
The form is investigated of the frequency spectrum of Compton photons for the 
monoenergetic and the power-law spectrum of relativistic electrons. It is 
shown that for a power-law energetic spectrum of electrons with the exponent 
* the emission power increases with the r ise  of the heliographic longitude of 
the flare e according to the law (s i08/2)~+' .  

The calculation of the cross  section 

* 
* * 

The C ompton-effect on relat  ivis tic electrons ("inverse C ompton-eff ec t ") 
in the Galaxy and near the Sun was considered in the works [I, 21 in connection 
with the question a s  to whether the galactic cosmic rays may have an electron 
component. 
galactic and solar cosmic rays f.3.41 the interest toward the possible role of the 
Compton-effect in cosmic conditions has risen considerably. Thus, for example, 
it is shown in [S, 61 that the Compton-effect of thermal photons on the electron 
component of gaiactic and metagaiaciic cosii-iic rays n a y  eentribute to  ths =bser= 
ved intensity of the isotropic background of y- rays. 
"inverse" Compton-effect in the generation of X-ray and y-ray emission during 
solar  flares is discussed in the works [7--11] . Finally, the works [12,13] point 
to the possible role of the Compton-effect in "radiostars". 

the spectrum and the intensity of X-ray and Y-ray  emissions occurring at  
Compton scattering of thermal photons on relativistic electrons in cosmic con- 
ditions, and in particular in the Sun' s atmosphere. 

However, upon the recent detection of the electron component of 

The possible role of the 

In connection with the above it is of interest to find practical formulas for 
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As in (51 we shall make use f o r  calculations the following expression for 
the Compton cross  section in the general invariant form 

where 

mc2 E y .  x i =  -- ~ E E V I  2EEyv2 V V vi - uv Vi + ' a = -  ( m C 2 ) 2  ' x2 = -- ( mc2) E '  
. , y = -  

vi vi - uv E 

At the same time the energy of the scattered photon is 
8 

E v = e v i  ~ ( v z + g v ) = c D ( e , E , V ~ , v s , v ) .  (2) 

The following denotations a r e  used un the expressions (1) and (2): 

e and E a r e  respectively the energies of a photon and electron prior to scatter-  
ing ; r e  = e2 / mc2 ; 5 and m - are the charge and the mass of the electron; e is 
the angle between the photon pulses k l  and k2 prior and after scattering; 0, 
and & 
Q1 and Q2 a r e  the corresponding solid angles. 

a r e  the angles between these pulses and the initial electron pulse p1 ; 

We shall consider that the relativistic electrons and the thermal photons 
a re  distributed isotropically and that the distribution of photons by energies is 
Planck. The effective c ross  section a(&, E )  for the formation of photons with 
energy E,  a t  scattering of thermal photons with Planck distribution on electrons 
with energy E will then have the form 

where frkdsz is the Compton cross  section (1); dQs is the solid angle character- 
izing the direction of the initial electron pulse; 

is the Pianck distribuLivrl L ' - - -  u . u ~ L L ~ u l l  L - - - L ~ - -  uL -4 +1..ar-- bAAba ,,,I nhntnna r-------- with .. _ _ _ _  temyerature T ( i n  
ene r g  e tic units ) . 

In the integral (3) we shall count the angles Q I , ~  f rom the direction of pho- 
ton pulse k l  
time 

and the angle Q, - from a certain arbi t rary direction. At the same 

eZ COS 0, +- cos cp sin 02 sin 01, 

dQi = sin Bideid~o. 

cos t3 = 

d~~ = sin t12d02dcp, (4) 

where cp is the angle between the planes 
count cpo is arbitrary. Since in (3) the integrand does not depend on Qs or TO, 

(kipi) and (kzpl), while the origin of the 
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when integrating over these angles and then utilizing the equality 
00 

Aa=i 

and the property of the d-function, we shall obtain 

where e = EVVZ/ (vi - av) ,  and the quantity A is determined by expression (1). 
In the integral (6) the region of integration over el and 
conditions 

is determined by the 

(7) o G el,2 <in, e > 0, 

the second condition being equivalent to the condition 
integration of the &function in (3) .  

EY < (vi /VIE, obtained a t  

The Compton emission in the Sun's atmosphere may notably exceed the ther- 

we shall consider in  the following that E , /  T>) 1. 
mal emission of the corona only in the region E v a  1 kev. 
of Sun's photosphere T w 1 ev, 
Moreover, for the problem under consideration the greatest interest is offered 
by the case of relativistic electrons (p  
when the following inequalities a r e  fulfilled: 

Since the temperature 

1) and of not too great 8 iergies E,, 

At fulfillment of one of these inequalities the principal contribution to the 
integral (6) is made by the small  angles 02, for because of the presence of the 
exponential factor the integrand decreases rapidly with the rise of 82 f r o m  zero. 
The second inequality allows to neglect the quantity, 82 by comparison with, vi 
everywhere in (6). 
lowing expression for I : 

As a result of integration (see Appendix) we obtain the fol- 

where, 5 = ( E , / T )  (1 - p) / (1 + fJ) and the function 

var ies  slowly with the variation of - x Considered in the following will be the re- 
lativistic electrons for  which E>&. According t o  (5), ( 9 ) ,  the cross  section 
for  such electrons has the following form: 
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where 

rcr2 k: 6,65 + cm2, 
8 
3 

(JT = - 

g(s) = gq(B = 1, x) = 1 + 2r + 21(1 + x)exEi(--2), (11) 
x=-(T). E,  mc2 2 

4 T ,  
It should be noted that the expression (11) may be obtained f rom (5) by uti- 

lizing a t  integration the approximate equality 

cos 8 % COS 81, (12) 

following f rom (4) at  e2=0. This result is easy to  understand, for a t  fulfillment 
of the c onditions 
the small  angles €I2; 

(8) the greatest contribution to the integral (6) is made by 

The function g (x) in (1 1) depends little on - x in the interval (0, m); at the ends 
of this interval it reaches the maximum value grn,, = .I, and f o r  x = 0,7 i t  has 
a unique minimum gmi, 0,6 (see the Figure). This is why at  finding the spectral 
emission power 

P (&, a = cnocl (E;, E )  EV (13) 

it is sufficient to retain in the sum (11) the first t e rm (see Figure, where f (x) = 
= p(s) /8nre2a-h,,, and the dashed line is the first t e rm of the sum). At the same 
time we shall find that the power is maximum at  x m 1 and is equal to 

(14) 
' 8nre2h 

Pmar = - cnog( l )  k: 0,3aThcno erg/sec cps 
ae 

It is characteristic that the value of the maximum is determined only by the con- 
centration of thermal photons. 

f 
I 0 I 2 3 4 

Fig. 1 

Let us compute the sFectral emission power for a power-law spectrum of 
electrons 

? ( E )  = KE-s, where K = ( x  - l)N&oW-'. (15) 

E e r e  x i  i is a zorstant; i n  the total concentration of relativistic electrons. 

EO is the boundary of the power-law spectrum of electrons from the side of small  
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energies. F r o m  (ll), (13), (15) we obtain 

where 

but 

In the extreme case of small Ev, when SO< 1, the integral in (16) is 

and for the power we obtain the following expression : 

In the opposite extreme case +?>1 in the integral (17) may be postulated 
50 00, reducing the integral t o  tabular [ I51 and the final expression for I and 

P will have the following form 

(19) 
x2 $. 4% + 11 x + 1  x + 5  

i= ( x  + 3) ( x  + 5) r ( + k - ) 9  

X-i E (i-w)/Z 

P(E7) = f ( x ) l a ~ C n o N o  (2) (s) t 

3 (x '+  4% + 11) ( x  - -  r (G) t( x+5 ; 
f(%) 2a ( x  + 3) ( x  + 5 )  

is the zeta-function of Riemann. For w = 1,5,2,3,4,5 the function f(x) is respect- 
tively equal to 0.216, 0.410, 0.9, 1.79, 3.62. 

Therefore, according to (18), in the presence of a boundary in the exponential 
energy spectrum of electrons Eo>mc2 the spectral  emission power P(&)  
linearly with E?, for small E,., and according to (19), for great values of 
we have 

r i ses  

1 4  - 
P(EV) - EV 

(just as for  the synchrotron radiation). The maximum of power is reached for a 
certain intermediate value Ev", which may be estimated by equating the expres- 
sions (18) and (19). After rather simple transformations we shall obtain 

Eym = 4 T v ( x )  (Eo I mc2)', (20) 

where v ( x ) =  0.6, 0.71, 0.94, 1. 16 and 1.38 at x = 1.5, 2, 3, 4, 5 respectively. 

It should be noted &at w'iile ~~3 is preFortinna1 to TEc2. the maximum power 
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p(&"l) does not depend on T and E, 
this with the aid of expressions (18) - (20). 

and is only a function of 9c i t  is easy to verify 

It was assumed above that the distribution of thermal photons is isotropic. In 
connection with the X-ray emission of solar f lares this assumption is to some ex- 
tent corroborated only for flares occurring at  small  heights in the chromosphere. 
If the emitting region is situated high in the corona, the other extreme case will 
prove to be more natural, when all photons move f rom the Sun along the radius, 
while the distribution of relativistic electrons is isotropic as  previously. In this 
case the angle 8 between primary photons moving in radial direction and the scat- 
tered photons moving along the visualray is fixed, and the cross  section & for 
the formation of photons with energy I% and pulse direction in the solid angle dQz 
has the form (cf. with (31) - 

where all the denotations have the same sense as in (1) - (4). 
f rom the direction of the scattered photon k2 ; then, upon integration of the 
-function over e we shall obtain for da. the expression (5) with the factor 
having here a t  the same time (cf. (6)) 

We shall count 
b -  

2 I ( T ) =  l d q  S d ( c o s & ) - ( + )  A e-EJT 

v2 

cos = cos 0 cos 02 + cos ip sin 0 sin &, 

but the denotations a re  the same as  in (5) and (6). 

At fulfillment of conditions (8) the basic contribution to integral (22)  is made 
by the small angles 0, , for which the second equality (22) passes to (12); utili- 
zing the latter and neglecting in the integral (22) the auatities proportional to a 
we shall obtain upon integration over e2 m 1 
the following form (g. 

the expression for da, having at  
with (11)): 

(23) 

The graph of the functiong* ( z )  is plotted in Fig. 1. 

Let us consider the cross  section da, defining (23) as  a function of the angle 0.  
At 8 = 0 (the flare is observed a t  the center of the disk) the cross section becomes 
zero. (At 0 = O  the cross  section (23) is not difficult to  find exactly; i t  is an exponen- 
tially small quantity 
its maximum a t  e NN n / 2  The effect of cross  
section increase with 0 is easy to understand directly with the aid of (1) - (3) .  
At 8 = 0 no scattering takes place, that is, the energy of primary photons does not 
vary; this is why the observer perceives only hard photons of Planck distribution, 
of which the number is exponentially small. 
ZLP ecery 
large angles 0. 

0 = I) ). as  8 increases so does the cross  section, reaching 
(the flare takes place near the limb). 

The principal part  of Planck photons has 
- -T 2nd it =st' zcqiiire an enernv -. &> T only at  scattering by sufficiently 
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For the exponential spectrum (15), taking into account (23),  we obtain 
(- cf. (16)) 

where I(z0)  is obtained f rom (17) by substitution of g, 5 xo by g*, 2, 
(see (23) ) ,  with, a t  the same time 

zo 

Let us consider (24) in extreme cases of small  and great  zo . At Z O < I  

we obtain analogously to (18) that the power dP N E, , /T ,  and a t  zo> 1 (for 
small  angles 8 only one such case is possible) we shall find analogously to (19) 
that dP - (1 -COS e ) ( x + m ( & ,  / ~) ( i -x ) / z .  A t  the same time, the energy E,?' for which 
the power d P  is nuximum, is proportional to (1 - cos 9 ) T ( E o /  mC2)2( cf. (20) ). 

Therefore, if the X-ray emission a t  f lares sets  in on account of Compton 
scattering of thermal photons on relativistic electrons with an exponential 
energetic distribution (15), in the region of hard photons, for which 

( E ,  I 4 T )  (m8 I Eo) > 1, 

r l P ( 0 )  - (sin 8 / 2)%+', 

the dependence of the emitted power on the angle 0 is as follows: 
(26) 

where 8 is the angular distance of the emitting region f r o m  the central meridian. 
This dependence means that, other conditions being equal, the greatest  flux of 
hard X- ray radiation must be observed for flares occurring near the limb and 
a t  a great height behind the Sun's limb. Such a peculiarity of the Compton emis- 
sion allows for a simple verification of this hypothesis by experimental means. 

The authors a r e  sincerely indebted to S. I. Syrovatskiy for his discussion 
of the results of this work. 

A P P E N D I X  

Assume that the inequality 
(1) . i - p>m. 

is fulfilled. 

f o r  any values of the angles, and the integral (5) will be written in the following 
f o r m  : 

Then it is possible to neglect in (6) the quantity av by comparison with. VI 

..I.. 



where 

Substituting (111) into (11) and performing the integratiorl over cp, we shall 
find that Ao = Ao(vlvz) is a quadratic trinomial relative to I /VI .  Upon integration 
over V I  in (11), we shall obtain 

At fulfillment of the first inequality (8) the substitution of the lower limit 
in (IV) provides exponentially small terms that may be dropped. In the remain- 
ing integral we may neglect the terms proportional to derivatives f r o m  A 0  , 
for the estimates of the corresponding integrals show that they a re  proportional 
to  the first and second powers of the parameter T / ~ , p < c i .  The integral (IV), 
in whuch the derivatives from A0 were dropped, is  expressed by a function of 
E i  ; this expression is reduced to the expression (9) for V z = i - p  (small angles 
82 )  (the value of the integral for v 2 =  17+s If l(EY/T)S>'l,  
it is sufficient to require that the inequality v l > a v  . be fulfilled only for small  
angles 02 , inasmuch as they make the principal contribution to the value of the 
integral (11). As is shown by calculation, this leads instead of (I) to the second 
inequality (8). 

is exponentially small). 

**ak END O F  APPENDIX *** 
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